Energy Internet and eVehicles Overview

Governments around the world are wrestling with the challenge of how to prepare society for inevitable climate change. To date most people have been focused on how to reduce Green House Gas emissions, but now there is growing recognition that regardless of what we do to mitigate against climate change the planet is going to be significantly warmer in the coming years with all the attendant problems of more frequent droughts, flooding, sever storms, etc. As such we need to invest in solutions that provide a more robust and resilient infrastructure to withstand this environmental onslaught especially for our electrical and telecommunications systems and at the same time reduce our carbon footprint.

Linking renewable energy with high speed Internet using fiber to the home combined with autonomous eVehicles and dynamic charging where vehicle's batteries are charged as it travels along the road, may provide for a whole new "energy Internet" infrastructure for linking small distributed renewable energy sources to users that is far more robust and resilient to survive climate change than today's centralized command and control infrastructure. These new energy architectures will also significantly reduce our carbon footprint. For more details please see:

Using autonomous eVehicles for Renewable Energy Transportation and Distribution: and

Free High Speed Internet to the Home or School Integrated with solar roof top:

High level architecture of Internet Networks to survive Climate Change:

Architecture and routing protocols for Energy Internet:

How to use Green Bond Funds to underwrite costs of new network and energy infrastructure:

Thursday, July 22, 2010

New sources of funding (>$24 Billion) for researchers from carbon and cleantech funds

[University researchers around the world are going to have to start to realize that funding from traditional sources such as funding councils and granting agencies will most likely decline over the coming years as governments face huge financial burdens as a result of last year’s financial crisis. A major new source of funding for research including, cyber-infrastructure, R&E networks and IT will have to come from the burgeoning climate and clean tech funds. Most of these programs earn their revenue are from a surtax on gasoline, coal or other large CO2 emissions. As a result their funding base is independent of the fickleness of government finances. As the threat of climate change becomes more real it is likely that these funds will grow significantly, as it is only through innovation do we have the faintest hope of addressing the biggest challenge facing this planet today.

Unfortunately most of this funds research is currently focused on energy research and carbon sequestration. Few yet recognize the importance of IT in reducing GHG emissions. The only exception is Quebec – with its recent announcement of $60 million for Green IT research.

I am working closely with various groups around the world such CAL-IT2 at UCSD, PROMPTinc ClimateCheck , CSA and others to help educate the administrators of these funds on the importance of funding IT research, cyber-infrastructure and networks. More importantly researchers and cyber-infrastructure providers need to understand that any application for funding must go through a much rigorous analysis in terms of the benefits of the research to reducing GHG emissions. Simple hand waving exercises on energy efficiency will not be sufficient as often is the case with traditional research proposals. Understanding how to genuinely reduce carbon, GHG protocols and the standards process will be essential if a researcher or research institution hopes to tap into these funds.

For more details on how to receive funding from these programs please see my NYSERnet presentation:

--Excerpts from Andy Revkin article in NY tomes BSA]

Filling the Global Energy Research Gap
Earlier this week, the International Energy Agency released a batch of new findings and reports as its contribution to the Obama administration’s “Clean Energy Ministerial” meeting in Washington. In any case, a more important analysis was the agency’s fresh look at trends in government support for research, development and demonstration of low-carbon energy technologies and ways for countries to collaborate to accelerate energy innovation.
The report describes how India, despite its poverty, has moved ahead with an initiative for raising money for energy research that the United States — thanks to a lack of leadership, congressional polarization and fear of anything remotely resembling a tax — has so far been unable to do: India has created a National Clean Energy Fund for research and innovation financed by a levy of $1.10 (U.S.) per metric ton of mined or imported coal. It’s a very modest fee that has created hundreds of millions of dollars to stimulate Indian research and testing of promising technologies.
I think that, particularly with presidential leadership, there could be more than 60 Democrats and Republicans in the Senate who could get behind the case for fueling an American energy quest this way, or with a directed 2-cent-per-gallon nudge to the gasoline tax, which alone would triple our research budget compared to the pre-stimulus level.
Here’s an excerpt and link to the full report:
The IEA’s Energy Technology Perspectives 2008 called for a clean energy revolution to address global energy security, energy access and environmental challenges. The recently released Energy Technology Perspectives 2010confirms that the transition has begun to a low-carbon economy. The past decade has seen an investment surge in clean energy technologies as governments made bold commitments to fund LCETs.
The 2008-09 green stimulus spending announcements were welcome increases in public RD&D, but is seems they are largely one-time commitments. Further, some governments are backing away from their stimulus spending announcements, and industry is reducing its investments. This is particularly worrisome as clean energy technologies continue to cost more, on an unsubsidized basis, than traditional fossil-based technologies and it is unlikely that a global price on CO2 will be settled in the near future. A great deal more must be done to bridge the gap between the estimated $10 billion in annual pre-stimulus spending and $40 billion to $90 billion needed to achieve sustainable energy goals

twitter: BillStArnaud
skype: Pocketpro

Blog Archive