Energy Internet and eVehicles Overview

Governments around the world are wrestling with the challenge of how to prepare society for inevitable climate change. To date most people have been focused on how to reduce Green House Gas emissions, but now there is growing recognition that regardless of what we do to mitigate against climate change the planet is going to be significantly warmer in the coming years with all the attendant problems of more frequent droughts, flooding, sever storms, etc. As such we need to invest in solutions that provide a more robust and resilient infrastructure to withstand this environmental onslaught especially for our electrical and telecommunications systems.

Linking renewable energy with high speed Internet using fiber to the home combined with eVehicles and dynamic charging where vehicle's batteries are charged as it travels along the road, may provide for a whole new "energy Internet" infrastructure for linking small distributed renewable energy sources to users that is far more robust and resilient to survive climate change than today's centralized command and control infrastructure. For more details please see:

Using eVehicles for Renewable Energy Transportation and Distribution: and

Free High Speed Internet to the Home or School Integrated with solar roof top:

High level architecture of Internet Networks to survive Climate Change:

Architecture and routing protocols for Energy Internet

Monday, July 19, 2010

Cloud helps universities reduce costs by 74% - more clouds reduce energy costs

[Here are several good articles on how clouds reduce costs and energy consumption at universities. Surprisingly nobody yet has developed the associated GHG standards to allow universities, or their service provider, to claim additional savings or revenue. Almost every university has a “green” department who are struggling to find ways to reduce the carbon footprint of their campus – and yet right next door the IT department probably has some low hanging fruit in reducing carbon by adapting clouds. GHG standards are necessary, not to earn offsets, but to have a verifiable and auditable standard that can help the university meet its GHG goals --BSA]


Cloud Helps Universities Cut Costs By 74%
Queensland University of Australia was among the first of a host of institutions to provide enterprise software to the university system via the cloud in the region. According to officials at the institution, this has allowed all of the universities that took part in their program to extend software beyond the in-house machines in a scalable fashion while cutting costs across the board. Since universities typically need to invest in everything required to keep IT running for students, including software licenses, hardware (including servers and backup) and a large staff to maintain these systems, making the switch to the cloud is a worthwhile investment of time and effort on the part of universities.
Queensland University of Technology in Australia leveraged cloud computing to provide enterprise software to more than 140 universities in Asia Pacific. Glenn Stewart, Professor of Information Systems revealed how the university dramatically reduced costs while it enjoyed greater assurance and scaleability.
Stewart heads the SAP University Competence Centre (UCC) which provides, on a non-profit basis, an SAPsuite of business software to over 800 academics and 42,000 students from 140 universities in Asia Pacific and Japan.
If an individual university was to run the software without the help of the UCC, it needs to invest in hardware, as well as recruit and train specialised staff. “Servers and backup facilities could easily bring the start up cost to A$200,000 (US$173,000). Replacement and recurring staff cost would be another A$150,000 (US$130,000) per year,” said Stewart. This would be a major obstacle for any university looking to use the enterprise software to support teaching.
The introduction of the UCC in 2000 allowed universities to pay A$30,000 (US$26,000) for the use of software on five clients, and now, by migrating the services into a private cloud, each university pays A$7800 (US$6760) for that same package, which is more than 74 per cent reduction in cost.
“Virtualisation and cloud computing has enabled QUT to host the needs of many universities. Individual institutions do not need to buy hardware, hire and train people, and manage all that. There has been significant cost savings for all institutions involved,” observed Dr Robert LoBue, Vice President, Global University Alliances, SAP.
QUT started to move its services into the private cloud last October (2009). Today, it has finalised 80 per cent of its migration, and expects to complete 95 per cent by the end of this year.
The decision to use cloud technology was straight-forward, said Stewart. “In 2005, we started to deliver our services using virtualisation. We would have needed over A$1million (US$866,900) of hardware, but that helped cut it down by half. Still, it did not provide the scaleability we desired. Cloud computing halted our capital expenditure and moved that into operational expenditure. We are now able to provide services on demand, and provide the lowest cost of service to the universities we serve.”
The key benefit of putting services on to the cloud is the ability to scale, according to LoBue. “At the end of 2008, there were 44 universities in the programme. Slightly over a year later, we have extended services to 140 education institutions,” he added.
Open Source Energy Savings

Any large company that wants to save energy by turning computers on and off automatically should consider Condor. With commercial solutions that do the same costing hundreds of thousands of dollars at large installations, Condor is clearly worth a look.

Condor is a hybrid example of high-quality, community-built software. Since the project started in 1988 at the University of Wisconsin, the code for Condor was viewable under an odd proprietary license. This did not retard the use and community improvement of the software, which has become robust over years and has been deployed on millions of computers. Condor supports all the operating systems a typical company or research institution would have and is rock solid in terms of stability and functions for its intended purpose, which is carving up work and sending it out to any number of computers for processing.

Now, following the path of so many other open source projects, companies including Red Hat and Cycle Computing are transforming Condor into a product. Condor allows large numbers of computers, whether servers, desktops or engineering workstations, to be used as a massive high-performance or high-throughput computing facility.
"Condor enables open and cost-effective high throughput computing to environments scaling up to 30,000 processors," says Jason Stowe, CEO of Cycle Computing, which offers support and management tools for Condor.

Condor's expansion toward power management is just one example of the way that the functional footprint of open source is rapidly expanding. Cycle Computing combines Condor and Hadoop, which allows file systems to be provisioned by farms of computers, to create cloud-like capabilities from internal resources. By adding cloud servers to the mix, the size of the computing environment can expand and contract as needed.

Paul Cormier, president of products and technologies at Red Hat, is working on combining a large collection of open source projects into a cloud provisioning and management suite. "The move to cloud computing as the next generation architecture has only been possible by integrating many of these open source projects, such as Condor," says Cormier. "It is only natural that the software for creating and managing these virtual environments come from the world of open source as well."

Greening the grid: Purdue turns server pool into power management hub
This post starts as a throwback to the utility and grid computing applications that used to dominate headlines.

The high-performance grid in question is Purdue University’s DiaGrid, which aggregates the idle compute power of 28,000 processors at the university and on campuses in Indiana, Kentucky and Wisconsin. What initially started as a project mainly focused on effective resource utilization has, over time, has become a potential method for harvesting energy across the connected systems, says John Campbell, associate vice president at Purdue’s Rosen Center for Advanced Computing. What makes this possible is the Condor and CycleServer management tools from Cycle Computing.

The directive is pretty simple at the university, which is trying to eke every available dollar out of the workstations and academic computers across the high-performance computing cluster, which are typically idle between midnight and 7 a.m. “Either join Condor or turn off your machine at night to conserve power,” Campbell says. Eventually, they won’t won’t have to make that decision: the software will automate a shutdown of idle machines.

To get a sense of the impact that DiaGrid has had on the Purdue IT budget, Campbell notes that if the university was forced to replace the computing cycles that the grid coordinates, it would have to spend roughly $3 million in new hardware, not to mention all the power required to run those new systems. The power discussion has grown louder in the past two years, Campbell says, as the campus seeks to get the most utilization out of every watt of power consumed. That conversation has inspired other universities to join the DiaGrid project.

Jason Stowe, CEO and founder of Cycle Computing, says many of the company’s clients — which include the likes of JP Morgan Chase, Lockheed Martin, Eli Lilly and Pfizer — are looking at how high-performance technical computing clusters can play a role in managing power management costs. While the power savings potentially might not be enormous, grid utility applications can play a key role in making sure a company’s existing power draw is used as effectively as possible.

“Rather than buying new machines and more data center space, these technologies can help them make better use of what they have and let them power down nodes that are no longer in use,” Stowe says.

twitter: BillStArnaud
skype: Pocketpro

Blog Archive