Energy Internet and eVehicles Overview

Governments around the world are wrestling with the challenge of how to prepare society for inevitable climate change. To date most people have been focused on how to reduce Green House Gas emissions, but now there is growing recognition that regardless of what we do to mitigate against climate change the planet is going to be significantly warmer in the coming years with all the attendant problems of more frequent droughts, flooding, sever storms, etc. As such we need to invest in solutions that provide a more robust and resilient infrastructure to withstand this environmental onslaught especially for our electrical and telecommunications systems and at the same time reduce our carbon footprint.

Linking renewable energy with high speed Internet using fiber to the home combined with autonomous eVehicles and dynamic charging where vehicle's batteries are charged as it travels along the road, may provide for a whole new "energy Internet" infrastructure for linking small distributed renewable energy sources to users that is far more robust and resilient to survive climate change than today's centralized command and control infrastructure. These new energy architectures will also significantly reduce our carbon footprint. For more details please see:

Using autonomous eVehicles for Renewable Energy Transportation and Distribution: and

Free High Speed Internet to the Home or School Integrated with solar roof top:

High level architecture of Internet Networks to survive Climate Change:

Architecture and routing protocols for Energy Internet:

How to use Green Bond Funds to underwrite costs of new network and energy infrastructure:

Monday, November 2, 2009

Rethinking Cyber-infrastructure - Dan Reed on the future of Cyber-infrastructure and Green IT

[Dan Reed is well known in the academic computing and cyber-infrastructure community. Dan is Microsoft’s Corporate Vice President for Extreme Computing where he also works with Tony Hey –the founder of eScience in the UK. Previously, he was the Chancellor’s Eminent Professor at UNC Chapel Hill, as well as the Director of the Renaissance Computing Institute (RENCI) and the Chancellor’s Senior Advisor for Strategy and Innovation for UNC Chapel Hill. Dr. Reed has served as a member of the U.S. President’s Council of Advisors on Science and Technology (PCAST) and as a member of the President’s Information Technology Advisory Committee (PITAC). He has also been Director of the National Center for Supercomputing Applications (NCSA) at UIUC, where he also led National Computational Science Alliance, a fifty institution partnership devoted to creating the next generation of computational science tools. He was also one of the
principal investigators and chief architect for the NSF TeraGrid

Dan Reed recently gave a great presentation on the Future of Cyber-Infrastructure at a SURA meeting. You can see a copy of his presentation at

His basic thesis is that the bulk of academic computing will probably move to commercial clouds. Although there will still remain some very high end close coupled applications that need dedicated supercomputers the majority of academic computing can be done with clouds. Despite the presence of grids and HPC on our campuses most academic applications still run on small clusters in closets or stand alone servers. Moreover the challenge with academic grids is building robust, high quality middleware for distributed systems and solving the myriad political problems of sharing computation resources in different management domains. As well, the ever increasing costs of energy, space and cooling will soon force researchers to start looking for computing alternatives. Clouds are solution to many of these
problem and in many ways represent the commercialization of the original vision for grids.

Dan also ruminates about the possibility of building “follow the
sun/follow the wind” cloud architecture on his blog, which of course
is music to my ears:


**Geo-dispersion: The Other Alternative **

If it were possible to replicate data and computation across multiple, geographically distributed data centers, one could reduce or eliminate UPS costs, and the failure of a single data center would not disrupt the cloud service or unduly affect its customers. Rather, requests to the service would simply be handled by one of the service replicas at another data center, perhaps with slightly greater latency due to time of flight delays. This is, of course, more easily imagined than implemented, but its viability is assessable on both economic and technical grounds.

In this spirit, let me begin by suggesting that we may need to
rethink our definition of broadband WANs. Today, we happily talk of
deploying 10 Gb/s lambdas, and some of our fastest transcontinental
and international networks provision a small number of lambdas (i.e.,
10, 40 or 100 Gb/s). However, a single mode optical fiber

has much higher total capacity with current dense wave division
(DWDM) technology, and typical multistrand cables contain many
fibers. Thus, the cable has an aggregate bandwidth of many terabits,
even with current DWDM.

Despite the aggregate potential bandwidth of the cables, we are
really provisioning many narrowband WANs across a single fiber.
Rarely, if ever, do we consider bonding all of those lambdas to
provision a single logical network. What might one do with terabits of
bandwidth between data centers? If one has the indefeasible right to
(IRU) or owns the dark fiber

, one need only provision the equipment to exploit multiple fibers
for a single purpose.

Of course, exploiting this WAN bandwidth would necessitate dramatic
change in the bipartite separation of local area networks (LANs) and
WANs in cloud data centers. Melding these would also expose the full
bisection bandwidth of the cloud data center to the WAN and its
interfaces, simplifying data and workload replication and moving us
closer to true geo-dispersion and geo-resilience. There are deep
technical issues related to on-chip photonics


and ROADMs

, among others, to make this a reality.

In the end, these technical questions devolve to risk assessment and
economics. First, the cost of replicated, smaller data centers without
UPS must be less than that of a larger, non-replicated data center
with UPS. Second, the wide area network (WAN) bandwidth, its fusion
with data center LANs and their cost must be included in the economic

These are interesting technical and economic questions, and I invite
economic analyses and risk assessments. I suspect, though, that it is
time we embraced the true meeting of high-speed networking and put our
eggs in multiple baskets.

Blog Archive