Energy Internet and eVehicles Overview

Governments around the world are wrestling with the challenge of how to prepare society for inevitable climate change. To date most people have been focused on how to reduce Green House Gas emissions, but now there is growing recognition that regardless of what we do to mitigate against climate change the planet is going to be significantly warmer in the coming years with all the attendant problems of more frequent droughts, flooding, sever storms, etc. As such we need to invest in solutions that provide a more robust and resilient infrastructure to withstand this environmental onslaught especially for our electrical and telecommunications systems and at the same time reduce our carbon footprint.

Linking renewable energy with high speed Internet using fiber to the home combined with autonomous eVehicles and dynamic charging where vehicle's batteries are charged as it travels along the road, may provide for a whole new "energy Internet" infrastructure for linking small distributed renewable energy sources to users that is far more robust and resilient to survive climate change than today's centralized command and control infrastructure. These new energy architectures will also significantly reduce our carbon footprint. For more details please see:

Using autonomous eVehicles for Renewable Energy Transportation and Distribution: and

Free High Speed Internet to the Home or School Integrated with solar roof top:

High level architecture of Internet Networks to survive Climate Change:

Architecture and routing protocols for Energy Internet:

How to use Green Bond Funds to underwrite costs of new network and energy infrastructure:

Tuesday, November 17, 2009

The impact of Cyber-infrastructure in a carbon constrained world

[With the growing power of supercomputers and data centers, people
are starting to realize that cyber-infrastructure may soon have a
significant impact on the environment because of its huge electrical
consumption and the resultant CO2 emissions if the electricity that
powers these systems comes from coal fired electrical plants. As I
mentioned in a previous blog the UK Meteorological Office new
supercomputer is one of the single biggest sources of CO2 emissions
(Scope 2) in the UK. Paradoxically this is the same computer that is
being used for climate modeling in that country. Thanks to a pointer
from Steve Goldstein we learn that even America’s spy agency –NSA,
is also running into energy issues and as such is building a huge new
data centers in Utah and Texas, of which both will probably use dirty
coal based electricity as well. There are also rumors that NCAR is
building a new cyber-infrastructure center in Wyoming (presumably
which will also use coal based electricity) which sort of undermines
its own credibility as America’s leading climate research institute.
I suspect very shortly with all the new announcements of grids and
supercomputers from OSG to Jaguar, that cyber-infrastructure
collectively in the US will be one of the top sources of CO2 emissions
as it is now in the UK. This is an unsustainable path and will come to
haunt those cyber-infrastructure organizations, particularly if
Congress passes a cap and trade bill. Cap and trade will increase the
price of electricity for institutions and businesses by an
“average” of 60% according to the EPA. But electrical prices will
be substantially more in states that are totally dependent on coal
fired electrical generation. Not only that, under the proposed cap and
trade bills any organization that emits over 25,000 tons of CO2 per
year (which includes most universities and research institutions) will
be required to purchase emission allowances or offsets if they want to
exceed their current level of emissions. It is not only traditional
power generators, cement plants or manufacturers that will be affected
by cap and trade. Most of the US higher ed and cyber-infrastructure
research facilities will be similarly affected. However there is some
good news: Cyber-infrastructure, if done right, can be a powerful tool
for reducing CO2 emissions. Larry Smarr and I recently gave a talk on
this topic at Educause which is now available per the link below –

Cyber-Infrastructure in a Carbon Constrained World

See also article in Educause Review

Slides are available on Slideshare

Weather supercomputer used to predict climate change is one of
Britain's worst polluters

The Met Office has caused a storm of controversy after it was
revealed their £30million supercomputer designed to predict climate
change is one of Britain's worst polluters. The massive machine - the
UK's most powerful computer with a whopping 15 million megabytes of
memory - was installed in the Met Office's headquarters in Exeter,
Devon. It is capable of 1,000 billion calculations every second to
feed data to 400 scientists and uses 1.2 megawatts of energy to run -
enough to power more than 1,000 homes.

New NSA data centers in Utah and Texas


"..."As strange as it may sound," he writes, "one of the most urgent
problems facing NSA is a severe shortage of electrical power." With
supercomputers measured by the acre and estimated $70 million annual
electricity bills for its headquarters, the agency has begun browning
out, which is the reason for locating its new data centers in Utah and
Texas. And as it pleads for more money to construct newer and bigger
power generators, Aid notes, Congress is balking.

"The issue is critical because at the NSA, electrical power is
political power. In its top-secret world, the coin of the realm is the

More electrical power ensures bigger data centers. Bigger data
centers, in turn, generate a need for more access to phone calls and
e-mail and, conversely, less privacy. The more data that comes in, the
more reports flow out. And the more reports that flow out, the more
political power for the agency.

Blog Archive