Energy Internet and eVehicles Overview

Governments around the world are wrestling with the challenge of how to prepare society for inevitable climate change. To date most people have been focused on how to reduce Green House Gas emissions, but now there is growing recognition that regardless of what we do to mitigate against climate change the planet is going to be significantly warmer in the coming years with all the attendant problems of more frequent droughts, flooding, sever storms, etc. As such we need to invest in solutions that provide a more robust and resilient infrastructure to withstand this environmental onslaught especially for our electrical and telecommunications systems and at the same time reduce our carbon footprint.

Linking renewable energy with high speed Internet using fiber to the home combined with autonomous eVehicles and dynamic charging where vehicle's batteries are charged as it travels along the road, may provide for a whole new "energy Internet" infrastructure for linking small distributed renewable energy sources to users that is far more robust and resilient to survive climate change than today's centralized command and control infrastructure. These new energy architectures will also significantly reduce our carbon footprint. For more details please see:

Using autonomous eVehicles for Renewable Energy Transportation and Distribution: http://goo.gl/bXO6x and http://goo.gl/UDz37

Free High Speed Internet to the Home or School Integrated with solar roof top: http://goo.gl/wGjVG

High level architecture of Internet Networks to survive Climate Change: https://goo.gl/24SiUP

Architecture and routing protocols for Energy Internet: http://goo.gl/niWy1g

How to use Green Bond Funds to underwrite costs of new network and energy infrastructure: https://goo.gl/74Bptd

Wednesday, December 16, 2009

Physicist Models Humanity as "Heat Engine" Argues Difficult to Decrease CO2

[While I agree with some of Garrett's conclusions I am remain optimistic that we can decouple energy consumption from CO2 emissions - hence this is I argue energy efficiency is attempting to solve the wrong problem. I agree with him that energy consumption seems to be constant associated with a growing economy and there is little that we can do to change that. But what we need to do is use energy that produces little or no CO2. Thanks to Jerry Sheehan for this pointer-- BSA]

Physicist Models Humanity as "Heat Engine" Argues Difficult to Decrease CO2


ScienceDaily (Nov. 24, 2009) — In a provocative new study, a University of Utah scientist argues that rising carbon dioxide emissions -- the major cause of global warming -- cannot be stabilized unless the world's economy collapses or society builds the equivalent of one new nuclear power plant each day.


"It looks unlikely that there will be any substantial near-term departure from recently observed acceleration in carbon dioxide emission rates," says the new paper by Tim Garrett, an associate professor of atmospheric sciences.

[..]

The study -- which is based on the concept that physics can be used to characterize the evolution of civilization -- indicates:

* Energy conservation or efficiency doesn't really save energy, but instead spurs economic growth and accelerated energy consumption.
* Throughout history, a simple physical "constant" -- an unchanging mathematical value -- links global energy use to the world's accumulated economic productivity, adjusted for inflation. So it isn't necessary to consider population growth and standard of living in predicting society's future energy consumption and resulting carbon dioxide emissions.
* "Stabilization of carbon dioxide emissions at current rates will require approximately 300 gigawatts of new non-carbon-dioxide-emitting power production capacity annually -- approximately one new nuclear power plant (or equivalent) per day," Garrett says. "Physically, there are no other options without killing the economy."

Getting Heat for Viewing Civilization as a "Heat Engine"

Garrett says colleagues generally support his theory, while some economists are critical. One economist, who reviewed the study, wrote: "I am afraid the author will need to study harder before he can contribute."

Garrett treats civilization like a "heat engine" that "consumes energy and does 'work' in the form of economic production, which then spurs it to consume more energy," he says.

[..]

Garrett says his study's key finding "is that accumulated economic production over the course of history has been tied to the rate of energy consumption at a global level through a constant factor."

That "constant" is 9.7 (plus or minus 0.3) milliwatts per inflation-adjusted 1990 dollar. So if you look at economic and energy production at any specific time in history, "each inflation-adjusted 1990 dollar would be supported by 9.7 milliwatts of primary energy consumption," Garrett says.

Garrett tested his theory and found this constant relationship between energy use and economic production at any given time by using United Nations statistics for global GDP (gross domestic product), U.S. Department of Energy data on global energy consumption during1970-2005, and previous studies that estimated global economic production as long as 2,000 years ago. Then he investigated the implications for carbon dioxide emissions.

"Economists think you need population and standard of living to estimate productivity," he says. "In my model, all you need to know is how fast energy consumption is rising. The reason why is because there is this link between the economy and rates of energy consumption, and it's just a constant factor."

Garrett adds: "By finding this constant factor, the problem of [forecasting] global economic growth is dramatically simpler. There is no need to consider population growth and changes in standard of living because they are marching to the tune of the availability of energy supplies."

To Garrett, that means the acceleration of carbon dioxide emissions is unlikely to change soon because our energy use today is tied to society's past economic productivity.

"Viewed from this perspective, civilization evolves in a spontaneous feedback loop maintained only by energy consumption and incorporation of environmental matter," Garrett says. It is like a child that "grows by consuming food, and when the child grows, it is able to consume more food, which enables it to grow more."


[..]
Perhaps the most provocative implication of Garrett's theory is that conserving energy doesn't reduce energy use, but spurs economic growth and more energy use.

"Making civilization more energy efficient simply allows it to grow faster and consume more energy," says Garrett.

He says the idea that resource conservation accelerates resource consumption -- known as Jevons paradox -- was proposed in the 1865 book "The Coal Question" by William Stanley Jevons, who noted that coal prices fell and coal consumption soared after improvements in steam engine efficiency.


Garrett says often-discussed strategies for slowing carbon dioxide emissions and global warming include mention increased energy efficiency, reduced population growth and a switch to power sources that don't emit carbon dioxide, including nuclear, wind and solar energy and underground storage of carbon dioxide from fossil fuel burning. Another strategy is rarely mentioned: a decreased standard of living, which would occur if energy supplies ran short and the economy collapsed, he adds.

"The problem is that, in order to stabilize emissions, not even reduce them, we have to switch to non-carbonized energy sources at a rate about 2.1 percent per year. That comes out to almost one new nuclear power plant per day."

"If society invests sufficient resources into alternative and new, non-carbon energy supplies, then perhaps it can continue growing without increasing global warming," Garrett says.


--

Blog Archive