This blog is about using ICTs to develop climate change preparedness solutions built around Energy Internet and autonomous eVehicles
Energy Internet and eVehicles Overview
Governments around the world are wrestling with the challenge of how to prepare society for inevitable climate change. To date most people have been focused on how to reduce Green House Gas emissions, but now there is growing recognition that regardless of what we do to mitigate against climate change the planet is going to be significantly warmer in the coming years with all the attendant problems of more frequent droughts, flooding, sever storms, etc. As such we need to invest in solutions that provide a more robust and resilient infrastructure to withstand this environmental onslaught especially for our electrical and telecommunications systems and at the same time reduce our carbon footprint.
Using autonomous eVehicles for Renewable Energy Transportation and Distribution: http://goo.gl/bXO6x and http://goo.gl/UDz37
Free High Speed Internet to the Home or School Integrated with solar roof top: http://goo.gl/wGjVG
High level architecture of Internet Networks to survive Climate Change: https://goo.gl/24SiUP
Architecture and routing protocols for Energy Internet: http://goo.gl/niWy1g
How to use Green Bond Funds to underwrite costs of new network and energy infrastructure: https://goo.gl/74Bptd
Wednesday, December 9, 2009
Emerging standards for greenhouse gas emissions for ICT
----- Forwarded by Bill Munson/ITAC/CA on 08/12/2009 17:33 -----
OPPORTUNITY TO TEST DRIVE EMERGING STANDARDS FOR GREENHOUSE GAS EMISSIONS
(a) Product Life Cycle GHG Costs
(b) Supply Chain GHG Costs
The World Resources Institute and the World Business Council on Sustainable
Development have developed standards on how to implement ISO 14064 for
companies and for projects, which have become widely used, particularly in
countries implementing the Kyoto Protocol.
They have now developed 2 new (draft) standards for Greenhouse Gas (GHG)
Accounting for (a) Product Life Cycle GHG Costs and (b) Supply Chain GHG
Costs. They are looking for companies to test-drive their draft standards
with a view to providing feedback on how the drafts can be updated to
provide a final standard. They are particularly interested in
sector-specific information and the ICT sector is a of great importance in
this area, because of its potential to impact GHG emissions both positively
and negatively.
http://www.ghgprotocol.org/standards/product-and-supply-chain-standard
Professor David Wright (dwright@uottawa.ca) at the University of Ottawa is
able to work with a company on this project. A rough division of
responsibilities would be that the company would assess its GHG emissions,
and Dr Wright would assess the impact on the draft standard.
http://www.telfer.uottawa.ca/component/listing,Wright,%20David/option,com_directory/page,viewListing/lid,111/Itemid,116/lang,En/
Shown below is a proposal from the International Institute for Sustainable Development, whois seeking support from ICT industry partners
for their CANARIE study. The key contact is their Project Manager, Global Connectivity, Tony Vetter, he can be reached at tvetter@iisd.ca or 613-288-2024.
ICT network operators and equipment vendors are looking to a variety of
solutions to reduce the GHG footprint of the world's ICT infrastructure.
Efficiency in how data centres consume energy may be part of the solution;
however using renewable energy is another “zero-carbon” option. CANARIE
Inc. invited proposals to their Green IT Pilot Program for projects that
will accelerate the development of, and participation in, national and
international "zero-carbon" cyber infrastructure and network platforms.
CANARIE has awarded funding to IISD for a project to assess the business
case for moving University IT assets to remote, zero-carbon data centre
facilities. Central to the business case will be an examination of whether
Universities could qualify for tradable “carbon offsets” (credits for GHG
reductions achieved which can be sold to industries who need them), a
revenue opportunity which could help underwrite the costs associated with
relocating their IT assets.
We think this project will be of interest to CIOs of all large
organizations because moving IT assets to zero-carbon facilities has not
previously been considered for generating carbon offsets. Further, there
may be other unexpected barriers to relocation of IT assets that could be
resolved through appropriate policy interventions, including jurisdictional
barriers arising from data security policies and capital financing rules,
and challenges associated with the availability of national
telecommunications infrastructure. These will also be explored through this
project.
Rational:
Due to the nature of how carbon credit awarding mechanisms are evolving,
IT organizations may in the end not be able to benefit from the carbon
reductions that their IT initiatives could help realize. This is due to
the concept of “additionality” – whether a project is deemed likely to
have occurred anyway without the support of revenues generated by
selling carbon offset credits.
This project’s assessment could open the door to broader acceptance of
IT asset relocation as a carbon reduction activity that should be
supported through carbon offset financial instruments.
Revenue opportunities from carbon credit trading could accelerate the
development of national and international "zero-carbon" cyber
infrastructure.
The tasks of this project will be to:
estimate depending on data availability, the aggregate carbon footprint
of IT assets and associated data centres at three Canadian Universities
assess the feasibility for Universities to generate carbon offsets if
their IT departments were to move location agnostic IT assets to remote
data centre facilities powered by renewable sources of energy
assess the feasibility of quantifying and selling these offsets in
registries and carbon exchanges;
assess the business case for University IT departments to move IT assets
to remote, zero-carbon data centre facilities, with attention to the
role of offset revenues if accessible to the relevant business unit;
assess the implications of study findings for scaling similar IT asset
relocation schemes for government agencies and institutions, as well as
the private sector
Anticipated insights:
characterization of the carbon incentives or disincentives to scaling
the relocation of IT assets to zero-carbon facility initiatives
long term implications of University IT asset growth projections and
associated carbon penalties
characterization of organizational boundaries encountered in carbon
accounting processes for facilities expenditures, energy consumption and
GHG emissions
characterization of jurisdictional barriers resulting from data security
policies and capital financing rules to the migration of University,
other public sector, and private sector IT infrastructure and services
characterization of the adequacy of National broadband infrastructure
for supporting cost effective access for remote relocation of IT
infrastructure and services
We believe that some ICT companies may be interested helping to determine
whether relocating IT assets to zero-carbon facilities might qualify for
tradable “carbon credits” in the emerging regimes, as well as in the
identification of other barriers and policy gaps that would impede the
feasibility of such initiatives.
--------------
Bill.St.Arnaud@gmail.com
www.canarie.ca/~bstarn
skype: pocketpro
blog:http://billstarnaud.blogspot.com/
Blog Archive
-
▼
2009
(80)
-
▼
December
(7)
- Physicist Models Humanity as "Heat Engine" Argues ...
- ICT and wireless can eliminate 6.9 Gt of CO2
- Huge jump in carbon footprint from telecom and Int...
- UK’s Carbon reduction commitment legislation – the...
- Emerging standards for greenhouse gas emissions fo...
- Calit2 and CANARIE See Campuses as Living Labs for...
- On-Site WInd Power Provides 100% of Power to Data ...
-
▼
December
(7)