Energy Internet and eVehicles Overview

Governments around the world are wrestling with the challenge of how to prepare society for inevitable climate change. To date most people have been focused on how to reduce Green House Gas emissions, but now there is growing recognition that regardless of what we do to mitigate against climate change the planet is going to be significantly warmer in the coming years with all the attendant problems of more frequent droughts, flooding, sever storms, etc. As such we need to invest in solutions that provide a more robust and resilient infrastructure to withstand this environmental onslaught especially for our electrical and telecommunications systems and at the same time reduce our carbon footprint.

Linking renewable energy with high speed Internet using fiber to the home combined with autonomous eVehicles and dynamic charging where vehicle's batteries are charged as it travels along the road, may provide for a whole new "energy Internet" infrastructure for linking small distributed renewable energy sources to users that is far more robust and resilient to survive climate change than today's centralized command and control infrastructure. These new energy architectures will also significantly reduce our carbon footprint. For more details please see:

Using autonomous eVehicles for Renewable Energy Transportation and Distribution: and

Free High Speed Internet to the Home or School Integrated with solar roof top:

High level architecture of Internet Networks to survive Climate Change:

Architecture and routing protocols for Energy Internet:

How to use Green Bond Funds to underwrite costs of new network and energy infrastructure:

Thursday, September 30, 2010

IT to consume 40% of world's electricity by 2030

[At Network World IT roadmap Federic Chanfrau, Senior VP of IT at Schneider Electric pointed out some interesting projections from the International Energy Agency (IEA). According to the IEA, if IT power consumption continues to grow 15% per year it will represent 40% of all global electrical consumption by 2030. Even if this growth rate is assume to be overly optimistic and we use the SMART 2020 forecast of 6% per year it still represents a staggering growth of doubling every 10 years in energy consumption and concomitant CO2 emissions.

An illustrative example of this staggering growth rate in ICT, again according to the IEA, is that fact that ICT represents the biggest energy consumption in many modern western home due to the aggregate electrical power draw from ICT devices such as flat screen TVs, computers, set top boxes, chargers, etc. This aggregate load exceeds the energy consumption of tradition appliances such as stoves, refrigerators, dish washers, etc. What is more astounding that energy consumption from ICT in our homes was virtually non-existent a decade ago.

We simply cannot let the ICT industry become the new bad boy of environmental GHG emissions. Our industry must immediately take steps to stop this unsustainable growth in energy consumption and CO2 emissions. And if we have any hope of reducing GHG emissions globally we must take immediate steps to make ICT products and services zero carbon.

Energy efficiency will not do it. A simple math calculation shows that we would need impossible gains in efficiency of 50-70% year over year over year on all new ICT products and services just to keep energy consumption emissions constant to what they are today. We must move beyond energy efficiency and look at building zero carbon solutions where all ICT equipment is powered by renewable energy sources only. We already have many good examples of how this can be done which I have blogged about in previous posts. – BSA]

For more information please see

twitter: BillStArnaud
skype: Pocketpro

Blog Archive