Energy Internet and eVehicles Overview

Governments around the world are wrestling with the challenge of how to prepare society for inevitable climate change. To date most people have been focused on how to reduce Green House Gas emissions, but now there is growing recognition that regardless of what we do to mitigate against climate change the planet is going to be significantly warmer in the coming years with all the attendant problems of more frequent droughts, flooding, sever storms, etc. As such we need to invest in solutions that provide a more robust and resilient infrastructure to withstand this environmental onslaught especially for our electrical and telecommunications systems.

Linking renewable energy with high speed Internet using fiber to the home combined with eVehicles and dynamic charging where vehicle's batteries are charged as it travels along the road, may provide for a whole new "energy Internet" infrastructure for linking small distributed renewable energy sources to users that is far more robust and resilient to survive climate change than today's centralized command and control infrastructure. For more details please see:

Using eVehicles for Renewable Energy Transportation and Distribution: http://goo.gl/bXO6x and http://goo.gl/UDz37

Free High Speed Internet to the Home or School Integrated with solar roof top: http://goo.gl/wGjVG

High level architecture of Internet Networks to survive Climate Change: http://goo.gl/juWdH

Architecture and routing protocols for Energy Internet http://goo.gl/niWy1g


Tuesday, September 29, 2009

UK Met Office: Catastrophic climate change, 13-18°F over most of U.S. and 27°F in the Arctic by 2060,

[Excerpts from Climate Progress Blog. Although this summer has been cool for many regions of North America the oceans overall have reached record high temperatures. More evidence that we are unsustainable path -- BSA]

http://climateprogress.org/2009/09/28/uk-met-office-catastrophic-climate-change-could-happen-with-50-years/

UK Met Office: Catastrophic climate change, 13-18°F over most of U.S. and 27°F in the Arctic, could happen in 50 years, but “we do have time to stop it if we cut greenhouse gas emissions soon.”
September 28, 2009

Finally, some of the top climate modelers in the world have done a “plausible worst case scenario,” as Dr Richard Betts, Head of Climate Impacts at the Met Office Hadley Centre, put it today in a terrific and terrifying talk (audio here).

No, I’m not taking about a simple analysis of what happens if the nation and the world just keep on our current emissions path. We’ve known that end-of-century catastrophe for a while (see “M.I.T. doubles its 2095 warming projection to 10°F — with 866 ppm and Arctic warming of 20°F“). I’m talking about running a high emissions scenario (i.e. business as usual) in one of the few global climate models capable of analyzing strong carbon cycle feedbacks. This is what you get [temperature in degrees Celsius, multiple by 1.8 for Fahrenheit]:

The key point is that while this warming occurs between 1961-1990 and 2090-2099 for the high-end scenarios without carbon cycle feedbacks, in about 10% of Hadley’s model runs with the feedbacks, it occurs around 2060. Betts calls that the “plausible worst case scenario.” It is something the IPCC and the rest of the scientific community should have laid out a long time ago.

As the Met Office notes here, “In some areas warming could be significantly higher (10 degrees [C = 15F] or more)”:

* The Arctic could warm by up to 15.2 °C [27.4 °F] for a high-emissions scenario, enhanced by melting of snow and ice causing more of the Sun’s radiation to be absorbed.
* For Africa, the western and southern regions are expected to experience both large warming (up to 10 °C [18 °F]) and drying.
* Some land areas could warm by seven degrees [12.6 F] or more.
* Rainfall could decrease by 20% or more in some areas, although there is a spread in the magnitude of drying. All computer models indicate reductions in rainfall over western and southern Africa, Central America, the Mediterranean and parts of coastal Australia.
* In other areas, such as India, rainfall could increase by 20% or more. Higher rainfall increases the risk of river flooding.

Large parts of the inland United States would warm by 15°F to 18°F, even worse than the NOAA-led 13-agency impacts report found “Our hellish future: Definitive NOAA-led report on U.S. climate impacts warns of scorching 9 to 11°F warming over most of inland U.S. by 2090 with Kansas above 90°F some 120 days a year — and that isn’t the worst case, it’s business as usual!”

[...]

Blog Archive