This blog is about using ICTs to develop climate change preparedness solutions built around Energy Internet and autonomous eVehicles
Energy Internet and eVehicles Overview
Governments around the world are wrestling with the challenge of how to prepare society for inevitable climate change. To date most people have been focused on how to reduce Green House Gas emissions, but now there is growing recognition that regardless of what we do to mitigate against climate change the planet is going to be significantly warmer in the coming years with all the attendant problems of more frequent droughts, flooding, sever storms, etc. As such we need to invest in solutions that provide a more robust and resilient infrastructure to withstand this environmental onslaught especially for our electrical and telecommunications systems and at the same time reduce our carbon footprint.
Using autonomous eVehicles for Renewable Energy Transportation and Distribution: http://goo.gl/bXO6x and http://goo.gl/UDz37
Free High Speed Internet to the Home or School Integrated with solar roof top: http://goo.gl/wGjVG
High level architecture of Internet Networks to survive Climate Change: https://goo.gl/24SiUP
Architecture and routing protocols for Energy Internet: http://goo.gl/niWy1g
How to use Green Bond Funds to underwrite costs of new network and energy infrastructure: https://goo.gl/74Bptd
Thursday, July 15, 2010
CO2 emissions from US datacenters greater than all CO2 emissions from Netherlands or Argentina
http://www.hpcwire.com/features/The-Coming-C-Change-in-Datacenters-96420844.html
The Coming 'C' Change in Datacenters
by Edward J. Lucente, Vice President of Business Development, Data Center Rebates, Inc.
________________________________________
Recently, I was at the Uptime Institute in New York and had several conversations about carbon dioxide (CO2) management for datacenters. Energy consumed by US datacenters in 2010 will reach 3 percent of overall US energy production. This will double in about five years given that the annual growth in datacenter energy consumption is 10 percent. Increases in datacenter CO2 emissions should mirror energy consumption increases since most datacenters will be unable to convert to greener, cleaner, renewable energy sources.
The good folks at the Uptime Institute estimate that datacenter CO2 emissions willquadruple between 2010 and 2020; also that annual global datacenter CO2 emissions are already on par with the CO2 emissions of the airline industry, or even entire countries. Maybe we should put datacenters in airplanes and keep all the CO2 flying around.
Annual CO2 emission comparisons (Mt = thousands of metric tons)
US datacenters 170 Mt
Argentina 142 Mt
Netherlands 146 Mt
Malaysia 178 Mt
The IT professionals that I spoke with are becoming familiar with their datacenters' "carbon footprint." They understand that by managing CO2 emissions they will be better prepared for existing or future greenhouse gas (GHG) regulations. (GHG also includes water vapor, methane, nitrous oxide, and ozone.)
Also, I noticed that a number of application software companies have sprouted up to promote carbon management information systems that deal with issues around CO2 compliance standards, CO2 inventory baselining, and financial management of carbon allowances and credits. Certainly, innovative application solutions will be needed to help datacenter professionals and executives navigate through CO2 management challenges associated with:
• Compliance.
• Conservation.
• Complexity.
• Cost.
• Competitiveness.
The federal government will be among the early adopters of carbon management software. The US federal government's demand for carbon management software is expected to grow from its current level of $36 million to $294 million by 2017, according to a new report by Pike Research.
US Legislation
In the United States, government regulations concerning CO2 include the EPA's GHG Reporting Rule and the pending Kerry-Lieberman bill, known as "cap and trade." Under the EPA's GHG Reporting Rule, suppliers of fossil fuels or industrial greenhouse gases, manufacturers of vehicles and engines, and facilities that emit 25,000 metric tons or more per year of GHG emissions are required to submit annual reports to EPA. This would include the largest datacenters, and there is a concern that over time this floor of 25,000 metric tons would be reduced by government. Currently, over a dozen US states are contesting this new EPA law in court, so stay tuned.
The passage of the Kerry-Lieberman bill in 2010 is less certain, especially now with the oil spill crisis in the Gulf of Mexico, but it is potentially far reaching. If passed, it would require many businesses to measure, monitor, or manage GHG offsets, abatement projects, GHG sources, GHG reporting, carbon prices, and various protocols. This could be a nightmare for datacenter professionals. Just the bill's preamble scares me, especially the "for other purposes" language:
To secure the energy future of the United States, to provide incentives for the domestic production of clean energy technology, to achieve meaningful pollution reductions, to create jobs, and for other purposes.
Call for Action
I tend to believe that government mandates are less efficient delivery mechanisms than programs developed through private industry and self-regulation; what concerns me is that I have not seen the IT industry take a more proactive, self-regulatory role with regard to managing and minimizing CO2 emissions. Consider these questions:
• Why should the IT industry wait around for government standards on CO2 emissions?
• Shouldn't datacenter professionals control and develop their own CO2 management information systems since they understand best their unique IT and business environments?
• Why wouldn't a CEO, Corporate Sustainability Officer (CSO), Corporate Social Responsibility (CSR) executive, or CIO want to take more control of their destiny?
As mentioned, IT shops can choose from various application solutions and turn to energy efficiency consultants for additional guidance. Datacenters that reduce their CO2 emissions will also reduce their energy bills (OpEx) and total cost of ownership.
I suggest, therefore, that the IT industry create its own "carbon efficiency consortium" to establish carbon management information standards and solutions aimed at reducing CO2 emissions in datacenters. This would be an industry-led, self-regulatory body that provides thought leadership on CO2 management and shares best practices and recommendations for carbon management.
My bet is that datacenter professionals who develop internal management information systems for carbon management now will achieve significant cost savings ahead of their competitors. It's not just about a greener planet; it's about building a sustainable and competitive IT and industry advantage.
About the Author
Edward J. Lucente is vice president of business development at Data Center Rebates, Inc., an IT efficiency consultancy based in Carlsbad, Calif., whose professional services focus on datacenter energy efficiency (DCEE), leasing integrated with technology refreshes, and negotiation of IT energy rebates. Please feel free to email comments toed.lucente@datacenterrebates.com.
------
email: Bill.St.Arnaud@gmail.com
twitter: BillStArnaud
blog: http://billstarnaud.blogspot.com/
skype: Pocketpro
Blog Archive
-
▼
2010
(65)
-
▼
July
(10)
- Computers and ICT in Australia account for 8% ener...
- New sources of funding (>$24 Billion) for research...
- Organizing research and teaching at universities t...
- The green telecoms market is expected to be worth ...
- Cloud helps universities reduce costs by 74% - mor...
- IEEE Green House Gas standards for 5G networks and...
- CO2 emissions from US datacenters greater than all...
- Quebec to invest $60 million in Green ICT for futu...
- Internet2 and NOAA Partner To Provide New High Cap...
- More on energy efficiency versus building a low ca...
-
▼
July
(10)