Energy Internet and eVehicles Overview

Governments around the world are wrestling with the challenge of how to prepare society for inevitable climate change. To date most people have been focused on how to reduce Green House Gas emissions, but now there is growing recognition that regardless of what we do to mitigate against climate change the planet is going to be significantly warmer in the coming years with all the attendant problems of more frequent droughts, flooding, sever storms, etc. As such we need to invest in solutions that provide a more robust and resilient infrastructure to withstand this environmental onslaught especially for our electrical and telecommunications systems and at the same time reduce our carbon footprint.

Linking renewable energy with high speed Internet using fiber to the home combined with autonomous eVehicles and dynamic charging where vehicle's batteries are charged as it travels along the road, may provide for a whole new "energy Internet" infrastructure for linking small distributed renewable energy sources to users that is far more robust and resilient to survive climate change than today's centralized command and control infrastructure. These new energy architectures will also significantly reduce our carbon footprint. For more details please see:

Using autonomous eVehicles for Renewable Energy Transportation and Distribution: http://goo.gl/bXO6x and http://goo.gl/UDz37

Free High Speed Internet to the Home or School Integrated with solar roof top: http://goo.gl/wGjVG

High level architecture of Internet Networks to survive Climate Change: https://goo.gl/24SiUP

Architecture and routing protocols for Energy Internet: http://goo.gl/niWy1g

How to use Green Bond Funds to underwrite costs of new network and energy infrastructure: https://goo.gl/74Bptd

Thursday, March 29, 2012

Why we need to bypass electrical utilities if we want to build a low carbon society


[I have long argued that we need to bypass electrical utilities if we want to build a low carbon society.
Utilities, even if they are publicly owned, have an inherent economic incentive to use cheap and dirty coal or gas, as they then earn the generating revenue. With distributed solar panels at homes and business the customer earns the revenue and the utility becomes a dumb pipe. Heard that argument before? Just as we had to bypass the telephone company to build the global Internet we will need to bypass the utilities to build the future Energy Internet.

Currently the entire electrical grid is built around an architecture of large centralized generating stations. A low carbon electrical grid will need an entire different architecture – and it already exists. It is called our roadway system. With electric vehicles we can use them as a store and forward packet technology to deliver renewable energy from roadside solar panels or windmills. Not only does this enable delivery of renewable energy to homes and businesses bypassing the utilities and existing electrical grid, it also provides a clean and efficient transportation system that complements our western lifestyle. For more details on the Energy Internet please see http://green-broadband.blogspot.ca/2012/02/stanford-university-research-on-dynamic.html –BSA]

Why generators are terrified of solar
http://reneweconomy.com.au/2012/why-generators-are-terrified-of-solar-44279

Here is a pair of graphs that demonstrate most vividly the merit order effect and the impact that solar is having on electricity prices in Germany; and why utilities there and elsewhere are desperate to try to reign in the growth of solar PV in Europe. It may also explain why Australian generators are fighting so hard against the extension of feed-in tariffs in this country.

The first graph illustrates what a typical day on the electricity market in Germany looked like in March four years ago; the second illustrates what is happening now, with 25GW of solar PV installed across the country. Essentially, it means that solar PV is not just licking the cream off the profits of the fossil fuel generators – as happens in Australia with a more modest rollout of PV – it is in fact eating their entire cake.
Both graphs were published last week on the website Renewables International, and were sourced from EPEX, the European power price exchange. The first graph, from 2008, shows peaking power prices rising to around €60/MWh and staying there for most of the day, with some visible peaks around noon and the early evening – the size of which would depend on the temperature and the usage.

The second graph shows a brief leap to €65/MWh around 9am, before the impact of solar PV takes hold – erasing the midday peak entirely and leaving only a smaller one in the evening. The huge bite out of day-prices is also a bite out of fossil fuel generators’ earnings and profits. Note that the average peak price in the second graph is barely higher than the baseload price.

Deutsche Bank solar analyst Vishal Shah noted in a report last month that EPEX data was showing solar PV was cutting peak electricity prices by up to 40 per cent, a situation that utilities in Germany and elsewhere in Europe were finding intolerable. “With Germany adopting a drastic cut, we expect major utilities in other European countries to push for similar cuts as well,” Shah noted.

Analysts elsewhere said one quarter of Germany’s gas-fired capacity may be closed, because of the impact of surging solar and wind capacity. Enel, the biggest utility in Italy, which had the most solar PV installed in 2011, highlighted its exposure to reduced peaking prices when it said that a €5/MWh fall in average wholesale prices would translate into a one-third slump in earnings from the generation division.
[…]
------
R&E Network and Green Internet Consultant.
email: Bill.St.Arnaud@gmail.com
twitter: BillStArnaud
blog: http://billstarnaud.blogspot.com/
skype: Pocketpro