Energy Internet and eVehicles Overview

Governments around the world are wrestling with the challenge of how to prepare society for inevitable climate change. To date most people have been focused on how to reduce Green House Gas emissions, but now there is growing recognition that regardless of what we do to mitigate against climate change the planet is going to be significantly warmer in the coming years with all the attendant problems of more frequent droughts, flooding, sever storms, etc. As such we need to invest in solutions that provide a more robust and resilient infrastructure to withstand this environmental onslaught especially for our electrical and telecommunications systems.

Linking renewable energy with high speed Internet using fiber to the home combined with eVehicles and dynamic charging where vehicle's batteries are charged as it travels along the road, may provide for a whole new "energy Internet" infrastructure for linking small distributed renewable energy sources to users that is far more robust and resilient to survive climate change than today's centralized command and control infrastructure. For more details please see:

Using eVehicles for Renewable Energy Transportation and Distribution: and

Free High Speed Internet to the Home or School Integrated with solar roof top:

High level architecture of Internet Networks to survive Climate Change:

Architecture and routing protocols for Energy Internet

Tuesday, August 31, 2010

Open Source solar powered GSM Cell phone system - ideal for university R&E MVNO networks

[I am working with a couple R&E networks that are looking at deploying their MVNO cell phone network integrated with campus WiFi facilities for data offload. This announcement open source, solar powered cell phone system will be a boom for R&E networks that want to utilize their fiber facilities and provide national (and international) cell phone services for researchers and students not available from traditional cell phone companies. No more usurious roaming and data charges. For more information please see my past blogs on building 5G networks—BSA]

Today I bring you a story that has it all: a solar-powered, low-cost, open source cellular network that's revolutionizing coverage in underprivileged and off-grid spots. It uses VoIP yet works with existing cell phones. It has pedigreed founders. Best of all, it is part of the sex, drugs and art collectively known as Burning Man. Where do you want me to begin?
"We make GSM look like a wireless access point. We make it that simple," describes one of the project's three founders, Glenn Edens.
The technology starts with the "they-said-it-couldn't-be-done" open source software,OpenBTS. OpenBTS is built on Linux and distributed via the AGPLv3 license. When used with a software-defined radio such as the Universal Software Radio Peripheral (USRP), it presents a GSM air interface ("Um") to any standard GSM cell phone, with no modification whatsoever required of the phone. It uses open source Asterisk VoIP software as the PBX to connect calls, though it can be used with other soft switches, too. (More stats in a minute that I promise will blow away your inner network engineer.)
This is the third year its founders have decided to trial-by-fire the system by offering free cell phone service to the 50,000-ish attendees at Burning Man, which begins today in Black Rock City, Nevada. I've posted a few photos of the set-up here. But the project is still new and mostly unheard-of. The second-generation hardware is in beta and the project’s commercial start-up, Range Networks, won't emerge from stealth mode until September (at theDEMO conference).
Two of OpenBTS's three founders are a duo of wireless design gurus that make up Kestrel Signal Processing: David Burgess and Harvind Samra. The third is industry luminary Glenn Edens, the same Edens who founded Grid Systems, maker of the first laptop in the early ‘80s, who is also known as the former director of Sun Microsystem’s Laboratories (among his other credentials). He is Range Networks’ CEO.
Burning Man has become a brutal, but great test vehicle. "There are not too many places you can go where tens of thousands of people show up, all of them with cell phones, in a hostile physical environment – lots of heat and dust, with no power and no cell service," Edens says.
GSM operates on licensed bandwidth, so for any U.S. installation, the OpenBTS crew always obtains a FCC license and works with the local carrier to coordinate frequency use. When attendees get into range and power up their phones, the system sends them a text that says “Reply to this message with your phone number and you can send and receive text messages and make voice calls.”
Edens notes: "You can also make phone calls to any number, but you can’t receive them, except from other people at Burning Man. We don’t have a roaming agreement in place with any carriers yet. So calls from people out of range from Burning Man will go to voicemail … but you can check your voicemail." (You can follow the progress of the system setup onBurgess's blog).
Edens jokes that Kestrel gets an equal number of compliments and complaints for making cell phones accessible at the event. You win some and you lose some.
Certainly, the potential of OpenBTS is a winner. The system is only "as big as a shoebox," Edens says, and requires a mere 50 watts of power "instead of a couple of thousand" so it is easily supported by solar or wind power, or batteries. It performs as well as any other GSM base station which has a maximum range of 35 kilometers and a typical range of 20 kilometers, depending on geography, antennae height, etc.
It can use a wireless backhaul, too. "We’re working with UC Berkeley on a really interesting project on super long distance wireless backhaul. We can also use private microwave and all the usual backhaul technologies," Edens says. A full‐power base station with software costs around $10,000. Compare that to the typical $50,000 - $100,000 investment for base station controllers, mobile switching centers and "a whole lot of plumbing" to bring in power, backhaul, etc., in a traditional cellular network.
Like other GSM cell networks, OpenBTS networks can connect to the public switched network and the Internet. Because it converts to VoIP, it "makes every cell phone look like a SIP end point … and every cell phone looks like an IP device. But we don’t touch anything in the phone … any GSM phone will work, from a $15 refurbished cell phone all the way up to iPhones and Androids." Low cost phones are particularly important for projects in impoverished areas, where people can benefit most from better communications services.
"The UN and ITU studies show that when you bring communications services to an area, healthcare goes up, economic well being goes up, education goes up," Edens says, noting that costs and power needs are low enough that even a small earthquake, we sent a system that was installed at the main hospital in Port Au Prince. They had it working an hour after unpacking it from the box. The hospital PBX was down. They used it as their phone system for about two weeks."
Kestral has sold about 150 units, hardware and software, since last January, with trial systems installed in India, Africa, the South Pacific and a number of other countries. The team has also done a few private installations like oil fields, farms, and ships at sea. They are also providing a system to the Australian Base in Antarctica. Plus OpenBTS has been downloaded about 4,000 times, mostly by researchers able to build their own base stations. It is also of interest for military communications, law enforcement and DARPA projects.
twitter: BillStArnaud
skype: Pocketpro

Blog Archive